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A generalised Monkman—Grant relation, which can be derived from the 4-® projection
technique, is proposed and then used to predict creep properties at non accelerated test
conditions. In this generalisation, creep rates at low strains are used to predict minimum creep
rates that are then used in the Monkman-Grant relation to predict times to failure. Predictions of
creep properties for 1CrMoV from this generalisation and from the 4-© projection technique
were assessed using the mean absolute percentage error (MAPE) and mean square error
(MSE)—which was further decomposed into systematic and random components. When
considering the accuracy with which minimum creep rates were predicted, all but the
generalised Monkman-Grant relation using 0.1% strain had a lower MAPE compared to the
4-Oprojection technique. The generalised Monkman-Grant relation using 0.5% and 1% strains
had larger random components of the MSE compared to the 4-®projection technique. When
considering the accuracy with which times to failure were predicted, all of the generalised
Monkman-Grant relations produced lower MAPE compared to the 4-© projection technique.
However, only when creep rates were measured at 0.2% strain, did the generalised
Monkman-Grant relation produce prediction errors that had a significantly higher random
component. © 2006 Springer Science + Business Media, Inc.

1. Introduction

Evans [1] has reviewed a number of creep property pre-
diction models that have been used in the recent past. The
most successful of these include the 4-® and 6-6 pro-
jection techniques developed and applied by Evans [2, 3]
and Evans and Scharning [4], the continuum damage tech-
niques (CDM) developed by Kachanov [5], Rabotnov [6]
and latter generalised by Othman and Hayhurst [7] and the
2 methodology for the life assessment of components re-
cently proposed by Prager [8]. What all these techniques
have in common is the need to model the whole creep
curve using some specified non linear function in time.
The parameters of this functional relationship then re-
quire estimation using quite complicated non linear least
squares procedures. This complication has limited the ex-
tent to which these relatively successful techniques have
been implemented and applied within industry.

When attempting to predict creep life, engineers face
a variety of complex problems including stress triaxility
at stress inducing features, selection of hardening rules to
be applied for relaxing of cyclical loading and the selec-
tion of suitable models for creep damage accumulation.
Whilst these issues are undoubtedly important, this paper
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concentrates on projection techniques suitable for analyz-
ing the results from uniaxial constant stress tests.

In particular, the objectives of this paper are to first
demonstrate that a simple but generalised Monkman-
Grant type relation can be derived from the 4-® projection
technique which can be applied without the use of compli-
cated non linear least squares techniques (which is central
to the 4-® projection technique). Then the predictive ca-
pability of this generalised Monkman-Grant relation is
assessed and compared to the 4-® projection technique
using a number of capability statistics not typically used
in the field of creep.

2. Experimental procedures

The Interdisciplinary Research Centre at Swansea (IRC)
carries out high temperature testing programs involving
many different materials. The test matrices are such that
specimens are tested at highly accelerated stress condi-
tions, i.e. at stresses well in excess of the design stress
for such materials, but at close to operating temperatures.
Further, all the tests are at constant stress and strain mea-
surements are taken at regular time intervals so that de-
tailed experimental creep curves are available.
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The batch of material tested at the IRC and used for the
present investigation represents the lower bound creep
strength properties anticipated for 1CrMoV rotor steels.
The chemical composition of this batch of material (in
wt%) was determined as 0.27% C, 0.22% Si, 0.77% Mn,
0.008% S, 0.015% P, 0.97% Cr, 0.76% Ni, 0.85% Mo,
0.39% V, 0.125% Cu, 0.008% Al and 0.017% Sn. Follow-
ing oil quenching from 1238 K and tempering at 973 K,
the material had a tensile strength of 741 MPa (at room
temperature), elongation of 17%, reduction in area of 55%
and a 0.2% proof stress of 618 MPa.

Eighteen test pieces, with a gauge length of 25.4 mm
and a diameter of 3.8 mm, were tested in tension over a
range of stresses at 783, 823 and 863 K using high preci-
sion constant-stress machines [9]. At 783 K, six specimens
were placed on test over the stress range 425 to 290 MPa,
at 823 K seven specimens were placed on test over the
stress range 335 to 230 MPa and at 863 K six specimens
were tested over the stress range 250 to 165 MPa. Up
to 400 creep strain/time readings were taken during each
of these tests. Normal creep curves were observed under
all these test conditions. Table Ia shows the times to fail-
ure, minimum creep rates and creep rates at p (where p
is in %) strain for all tested specimens. Creep rates were
measured from the data points making up the experimen-
tal creep curves using numerical derivates (i.e. a second
order version of a lagrange interpolating polynomial).

To assess the extrapolative capability of these models,
long-term property data was supplied independently by an
industrial consortium involving GEC-Alstom, Babcocks
Energy, National Power, PowerGen and Nuclear Electric.
These longer-term properties came from the same batch
of material used in the accelerated test programme de-
scribed above but for specimens with gauge lengths of
125 mm and diameters of 14 mm that were subjected to
tests on high sensitivity constant-load tensile creep ma-
chines. Twelve specimens were tested in this way at 823 K
and at stresses ranging from 215 to 77 MPa.

This longer-term data was published by Wilshire et al.
[10] and at the time of publication in 1993 the creep prop-
erty measurements made on these 12 specimens were
incomplete. Table Ib summarises the full results of this
longer-term data set. As can be seen, at the very low
stresses only the times to low strains and creep rates at
low strains were recorded (as these specimens had not
failed when this data was published). Again creep rates
were measured from the strain-time measurements made
at p strain using numerical derivatives (i.e. a second or-
der version of a lagrange interpolating polynomial). Un-
like the short term data, all of these longer-term tests
were carried out at constant load. The extent to which
various creep property values are affected by the choice
of constant load or constant stress methods depends on
the material ductility and the shape of the creep curve.
As shown by Wilshire et al. [10], the minimum creep
rates were virtually unaffected, whereas only small re-
ductions in creep lives were observed for constant load
condition.
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The short-term data set is therefore made up of i = 1
to N (where N = 18) specimens and the longer term data
set is made up of j = 1 to M (where M = 12) specimens.
In what follows j and i will now be used to represent the
test condition at which the jth and ith specimens were
tested. Predictions of minimum creep rates and times to
failure using the 4-® projection technique are taken from
Evans [11] and Table Ic presents some of these longer-
term predictions.

3. Theoretical underpinnings of a generalised
Monkman-Grant relation

3.1. The 4-® projection technique

The 4-© projection technique starts of by measuring com-

plete creep curves at a variety of different accelerated

test conditions, i.e. for all test conditions making up the

short-term data set. Then each experimental creep curve

is modeled using

g0 = 0p1(1 —e™) + 0,3% —1)  (la)

where ¢; , is the strain at time ¢ at accelerated test condition
i. The parameters ®; | to ©,; 4 are estimated using quite
complicated non linear least squares algorithms.

To predict the creep curve at or close to operating test
conditions, these estimated theta parameters are then re-
lated to the accelerated test conditions through the extrap-
olation function given by

In[O; ;] = Bro+Br 1 Ti+Bi 2 Ti+Bi st T (Ib)
where 1; is the stress at accelerated test condition i and
T; is the temperature at the same test condition. With four
Theta parameters, k varies from 1 to 4. Values for the Sy,
parameters are estimated using complex weighted least
squares procedures using only the accelerated test data.
Weighting is required to deal with the fact that some of
the Theta parameters are estimated with more reliability
than others—depending on the experimental scatter in the
measured creep curve.

Equation 1b is then used to predict the Theta values
associated with operating condition j, ® ; . These are then
substituted into Equation la to predict the shape of the
creep curve at this operating condition. From this creep
curve a range of creep properties can be read off. Evans
[2 ] explains in detail how minimum creep rates, times to
failure and times to various strains can be read off from
the predicted creep curve.

A procedure not normally used in the theta projection
technique is to use the Monkman-Grant relation [12] to
obtain a life time prediction

In(t; 1) = Ao + A1 In(é; ) 2

where values for Ay and XA; are estimated using linear
least squares from the accelerated test data only and &; ,
is read off the predicted creep curve. Whilst doubt has
been expressed in the past by Dobes and Malicka [13 ] and



TABLE TA Results making up the shorter-term data set

Creep rate (h™!) at p strain

Min. creep rate

Temp. (K) Stress (MPa) 0.05% 0.1% 0.2% 0.5% 1% Failure time (h) (h™!)

783 425 1.70E-2 1.45E-2 1.20E-2 6.88E-3 4.51E-3 14.06 4.18E-3
783 370 1.18E-3 1.04E-3 8.72E4 3.83E4 291E4 180.99 2.80E4
783 350 1.61E-3 1.30E-3 4.90E-4 1.82E4 1.38E+4 218.28 1.37E4
783 320 5.94E4 5.08E—4 2.44E-4 1.13E4 8.81E-5 387.81 8.88E-5
783 305 1.29E4 1.10E4 7.89E-5 3.16E-5 3.21E-5 1469.89 2.77E-5
783 290 9.26E-5 5.43E-5 3.18E-5 1.41E-5 1.39E-5 4458.61 1.28E-5
823 335 1.11E-2 9.41E-3 8.17E-3 3.88E-3 2.63E-3 30.55 2.55E-3
823 310 6.35E-3 6.00E-3 3.92E-3 9.77E4 7.18E4 67.46 6.55E4
823 290 5.10E-3 4.53E-3 2.33E-3 1.05E-3 7.56E—4 68.00 7.74E-4
823 270 6.24E—4 5.93E4 491E4 3.99E4 2.27E4 343.18 2.10E4
823 250 8.58E4 5.24E4 2.98E4 1.79E-4 1.05SE4 847.41 8.05E-5
823 240 7.02E-4 5.78E4 4.73E-4 2.06E4 1.04E4 738.18 8.33E-5
823 230 4.40E4 3.02E4 1.25E4 5.30E-5 3.26E-5 2583.93 2.63E-5
863 250 4.15E-2 7.24E-3 4.87E-3 2.98E-3 2.02E-3 39.88 1.77E-3
863 240 1.00E-2 8.26E-3 6.59E-3 3.83E-3 2.55E-3 36.95 1.95E-3
863 220 4.66E-3 4.16E-3 3.59E-3 1.56E-3 9.33E4 127.64 7.12E-4
863 200 1.19E-3 9.91E4 4.93E-4 3.27E4 2.17E4 300.15 1.90E4
863 180 6.70E-4 6.22E4 3.88E4 1.53E4 9.83E-5 573.82 9.06E-5
863 165 7.20E-4 6.68E—4 5.78E—4 1.89E4 7.40E-5 1433.8 4.10E-5

Creep rates at p strain were measured from the data points making up the experimental creep curves using a second order version of a lagrange interpolating

polynomial.

TABLE IB Results making up the longer-term data set

Creep rate (h™!) at p strain

Rupture Min. creep rate

Stress (MPa) 0.05% 0.1% 0.2% 0.5% 1% Failure time (h) elongation (%) (h~!)
215 - - - - - 1359 27.2 -

185 - - - - - 2956 21.7 -

185 - - - - - 3660 19.6 -

170 - - - - - 8623 22.0 -

170 - 9.2E-5 2.0E-5 4.6E-6 1.7TE-6 13559 15.4 2.5E-06
154 - - - - - 24328 15.5 -

139 4.4E-5 7.5E-6 4.0E-6 2.01E-6 1.2E-6 30558 15.1 1.1E-06
139 - 8.2E-6 4.0E-6 7.9E-7 - - - -

139 - 1.1E-5 4.5E-6 9.8E-7 - - -

108 4.3E-6 9.0E-7 45E-7 2.5E-7 2.3E-7 - - 2.1E-07
77 1.5E-6 2.2E-7 1.0E-7 5.6E-8 - - -

77 1.6E-6 1.8E-7 7.7E-8 - - - - 4.0E-08

— No observation made. Creep rates at p strain were measured from the strain-time measurements made at p strain using a second order version of a lagrange

interpolating polynomial.

Evans [14] as to whether the parameters of the Monkman-
Grant relation are constant over all temperatures, Evans
[15] has shown that these parameters are constant over a
very wide range of stresses and at all temperatures below
873 K (this assertion is limited to 2.25 CrMo material and
work on long term data for other materials would be a
beneficial area for future research).

3.2. The relationship between creep rates
within the 4-0© projection technique

The above 4-® projection technique implies an approx-

imate linear dependence in a double logarithmic coor-

dinate system between creep rates measured at any low

strain and the minimum creep rate. Given the nature of

TABLE IC Longer-term predictions made using the 4-® projection
technique at 823 K

Predicted Failure Predicted Minimum

Stress (MPa) time (h) creep rate (h™1)
215 3,126 1.9E-5
185 10,599 5.1E-6
170 19,505 2.6E-6
154 35,879 1.4E-6
139 65,974 7.2E-7
108 222,864 1.9E-7
77 752,147 4.2E-8

Equation 1 above, this can not be shown algebraically in
a closed form expression. However, the By ; values shown
in Table II were used in conjunction with Equation 1b to
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TABLE II The g parameters of Equation 1b use to simulate ®; x values
in the 4-© projection technique

Br.o Bk Br.2 Bi.3
k=1 0.25058 —0.023321 —0.003906 2.34E-05
k=2 —95.97042 0.062727 0.086519 —1.89E-05
k=3 —1.855094 —0.039266 —0.005962 5.53E-05
k=4 —77.03491 0.013713 0.065145 3.12E-05

calculate ®;; values over a very wide range of stresses
and temperatures. (These B ; values are actually the es-
timates obtained from the short-term data base described
in Section 2 above). Stresses ranged from 500 down to
50 MPa and temperatures from 923 down to 723 K. These
®, ; values were then used to calculate minimum creep
rates and creep rates at various strains (through the differ-
entiation of Equation 1a).

It can be seen from Fig. 1 that on a double logarithmic
coordinate system there is a very good linear relation-
ship existing between the minimum creep rate and the
creep rate at p strain within the 4-® projection technique.
This relationship does however change with the strain
chosen—with the intercept term increasing with increas-
ing strain.

3.3. The generalised Monkman-Grant relation
Fig. 1 suggests a simple approach to predicting minimum
creep rates at close to operating conditions. There is no
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need to measure complete creep curves, or from them the
theta values at various accelerated test conditions. Nor is
there a need to extrapolate these theta values. Instead, N
specimens are tested under accelerated conditions until
failure. For each specimen, the minimum creep rate is
measured together with the creep rates at various low
strains (typically 0.05% through to 1%) and the times to
failure. From this data the following relationship is then
estimated using linear least squares

In(é; ;) = 8o + &1 In(é; ) (3a)

where ¢&; ,is the creep rate at p creep strain under accel-
erated test condition i. To predict minimum creep rates
around operating conditions (test condition j), M speci-
mens are tested under these conditions until p strain has
been reached. These M tests are then discontinued. The
measured creep rates at p strain, &; ,, are then inserted into
Equation 3a to predict the minimum creep rate

In(&; ) = 60 + 81 In(&; ) (3b)

The time to failure around operating conditions can in turn
be predicted using a generalised Monkman-Grant relation
which is obtained by substituting Eqs. 3b into Equation 2

In(t5) = o + ¢11n(é; ) (o)
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Figure I The relationship between minimum creep rate and creep rate at p strain implied by the 4-© projection technique.
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where ¢g = Ag+Xr18p and ¢; = A;6;. In all cases the
values for A and § are estimated only from the accelerated
or short-term data set.

The standard Monkman-Grant relation has the advan-
tage of being easy to estimate and once the minimum
creep rate is known, the life of the material can be pre-
dicted from it using Equation 2. This is attractive because
specimens can be put on test at operating conditions until
the minimum creep rate is recorded and then removed. Be-
cause this typically occurs well before the materials life, a
life prediction can be made well in advance of failure. The
disadvantage of using the standard Monkman-Grant re-
lation to predict safe life is that at operating conditions, it
can still take tens of thousands of hours to reach the mini-
mum creep rate and tests of this length are often not viable
from a practical or economic perspective. The gener-
alised Monkman-Grant relation described in Equation 3¢
overcomes this limitation because creep rates at very low
strains are observed well before the minimum creep rate.

4. Predictive capability

To assess the predictive accuracy of the creep property
prediction models described above, these models are first
estimated using the results from the N specimens making
up the short-term data set. The models are then used to
predict the properties of those M specimens tested in the
longer-term data set. One simple measure of predictive
accuracy is the mean squared prediction error (MSE) or
the mean absolute prediction error (MAE). Often the MSE
is square rooted to be in the same units as ¥;

1 M

MSE = — ; [Y; (4a)
1 M

MAE = -3 [[Y; = Y] (4b)

j=1

where Yj is the predicted creep property for the specimen
tested at the jth longer-term test condition and Y; is the
actual creep property for this specimen (squares or abso-
lute errors are used so that over and underestimates are
not offsetting in the averaging procedure). However, both
the MSE and the MAE lack any sense of scale and this
can be overcome by expressing the prediction error as a
percentage of the actual value

v Ty, -7)]
Z[—( =7 ’)} (4c)
j=1 !

} (4d)

The MSE is a useful way of assessing the predictive accu-
racy of a creep model because this error, following Theil’s

MSPE =

H
SE

M A

100 Y, —Y;

MAPE = — Y| |2~
M=y

analysis [16 ], can be decomposed into a number of dif-
ferent components

| M 1 M
_ 2
MSE——M Elej El (e,—e)-i—e
j= j=

and upon expanding the brackets

Zﬁil (ej — é)2 +é2+2ei Ziwzl (Ej — é)
M M

MSE =

(52)

where ¢; = Y; — ¥ is the prediction error associated with
the jth test condition in the longer-term data set and ¢ is
the average prediction error calculated from the M longer-
term data points. The first expression in Equation 5a is the
sample variance of the prediction error (biased in small
samples), Sf, and for any sample the (e — é) term always
sums to zero so

MSE = ¢&* + §? (5b)

A good model will predict with an average error close to
zero and with only small over/under predictions around
this average, i.e. small variation in the prediction error. A
plot of actual versus predicted creep property values can
be used to further decompose this MSE. On such a plot,
all the data points should fall on a one to one line if the
creep prediction model is a perfect predictor. That is o« =
0, ,B—landS2 0in

Yi=a+BY, +e (6)

where ¢; is the extent to which the jth creep property
prediction differs from o + ,BY and S 2 is the variance in
such disturbances. Rearranging Equatlon 6 above for the
prediction error gives

Y, —V)=ej=a+@B—DY+¢g @)

Assuming that ¥; and &; are independent of each other it
follows from Equations 7 and 5b that

MSE =& + {(B — 1)’S}} + 57 (8a)

where S)Z7 is the variance of the predictions. Thus

- &2 N {B- 1)25)2;} s?
MSE MSE MSE
=Um+Ur+Up (8b)

Equation 8b shows that a proportion of the MSE is due
to the average of the models predictions differing from
the average of the actual values Uy;. Another part is due
to the slope of the best fit line on the actual v prediction
plot differing from 1, Ug. Both Uy and Ug therefore
represent systematic errors and large values for these two
terms suggest that the creep model is incomplete in some
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way. For example, it may suggest that some explanatory
variables are missing from the model, or that the models
functional relationship between the creep property and
test conditions is incorrect. A final part of the MSE is due
to the data points on the actual v prediction plot not all
lying on the best fit line, Up. When they all lie on the
best fit line ng = 0. As the g; are random in nature, Up
represents random prediction errors that can’t be reduced.
Ideally, a creep property model should have a very small
MSE with Uy = Ug =0 and 1 = Up.

5. Creep property predictions using the
traditional and simplified 4-© models
5.1. Predicting minimum creep rates
Fig. 2a shows the actual relationships existing between
creep rates at various low strains and the minimum
creep rate both in the short and longer-term data sets.
At each chosen strain there is a clear linear correlation
between the logarithmic creep rate at that strain and the
logarithmic minimum creep rate within the short-term
data set. For example, the logarithmic creep rate at
0.1% strain can explain 93.01% of the variation in the
logarithmic minimum creep rate in the short-term data
set. This rises to 99.3% when using the creep rate at
1% strain. At all strains the value for §; in Equation 3a
appears to fluctuate randomly around a value of unity.
However, 8¢ appears to increase with increasing strain
and these two results are consistent with that to be
expected from the 4-® projection technique.

Fig. 2a also shows that at all strains, a reasonable pre-
diction of the minimum creep rate in the longer-term data
set can be made. The accuracy of these predictions are
quantified in Table III where the MAPE and the MSE to-
gether with its decomposition (given by Equation 8b) are
shown. The 4-© projection technique produced a MAPE
of just 47.37%. Further, the majority of the errors made
in predicting the minimum creep rate in this way were
not random in nature. These systematic errors made in
predicting the minimum creep rate amounted to 92.51%,
with 30.57% of the MSE attributable to the average of
the models predictions differing from the average of the
actual values and 61.94% of the MSE attributable to the
slope of the best fit line on the actual v prediction plot
differing from unity. Only 7.49% of the prediction errors
were random in nature.

In contrast to this, the best of the generalised Monkman-
Grant relations (based on the MAPE) used the creep rates
at 0.5% and 1.0% strains. For example, using creep rates
at 0.5% strain the majority of the errors made in predict-
ing the minimum creep rate are now random in nature
(52.8%). The systematic errors made in predicting the
minimum creep rate amounted to 47.2%, with 1.07% of
the MSE attributable to the average of the models predic-
tions differing from the average of the actual values and
46.13% of the MSE attributable to the slope of the best
fit line on the actual v prediction plot differing from 1.
Indeed both these models perform much better than the
4-© projection technique.
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Figure 2 (a) The observed experimental relationship between minimum creep rate and creep rate at p strain. (b) The observed experimental relationship

between failure time and creep rate at p strain.
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Figure 2 Continued.

Even when creep rates at lower strains are used, the
models perform reasonable well with acceptable MAPE,
although the majority of the errors made in predicting the
minimum creep rate are then systematic in nature. This
may reflect the larger errors made in measuring creep rates
very early on in a creep curves evolution. What stands out
from this is that the extra complexity involved with using
the 4-® projection technique as compared to the gener-
alised Monkman-Grant relations does not reflect itself in a
proportionate improvement in predictive accuracy. How-
ever, there remains the question of which level of strain
to measure the creep rate. A future paper will address
this issue further by assessing whether a combination of
strains is best.

5.2. Predicting times to failure
Fig. 2b shows the actual relationship existing between
the minimum creep rates at various low strains and time
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to failure both in the short and longer-term data sets.
At each chosen strain there is a clear linear correlation
between the logarithm of the creep rate at that strain
and the logarithmic time to failure within the short-term
data set. For example, the logarithmic creep rate at 0.1%
strain can explain 91.52% of the variation in the loga-
rithm of the time to failure in the short-term data set.
This rises to 95.2% when using the creep rate at 1%
strain. It can also be seen that the generalised Monkman-
Grant relations shown Fig. 2b extrapolate well to the
longer-term data even at low strains. This is because the
R? values associated with the lowest strains do not ap-
pear to be very much lower than that associated with
1% strain or indeed the minimum creep rate over the
short-term data. (The R? associated with the Monkman-
Grant relation is 97%). At all strains the value for ¢; in
Equation 3c appears to fluctuate just below a value of
unity. However, ¢( appears to decrease with increasing
strain.

TABLE III The MAPE, MSE and MSE decomposition for predictions of the minimum creep rate

L. Generalised Monkman-Grant models using creep rates at:
Predictive
statistics 0.1% strain 0.2% strain 0.5% strain 1% strain 4-0
MAPE 94.25% 36.76% 25.40% 22.90% 47.37%
MSE 2.04E-11 1.49E-12 1.36E-13 4.30E-13 3.36E-13
Um 15.12% 16.48% 1.07% 41.79% 30.57%
Ur 84.14% 79.06% 46.13% 36.75% 61.94%
Up 0.74% 4.46% 52.80% 21.46% 7.49%

3913



1000

O Actual short-term data
® Actual longer-term data
—— 4-theta predictions
X Generalised Monkman -Grant predictions (p = 0.1%)
+ Generalised Monkman -Grant predictions (p = 0.2%)

Stress, (MPa) ©

100

10 100 1000

10000 100000 1000000

Time to Failure, (h), t;

Figure 3 Predicted In(t)/In(fr) plots for constant stress conditions, compared with the measured # values obtained from short-term constant-st 823 K.

Fig. 3 gives a slightly different perspective on the short
and longer-term predictions shown in Fig. 2b. In Fig. 3 the
actual times to failure, predicted times to failure associ-
ated with the generalised Monkman-Grant relation (with
creep rates measured at 0.1 and 0.2% strain) and predicted
times to failure given by the 4-® projection technique at
823 K are plotted against various stresses. All these proce-
dures produce good predictions of the short term data, but
the generalised Monkman-Grant relation does not overes-
timate the longer-term data to the same extent as the 4-©
projection technique. (Note how only the 4-® projection
technique produces predictions that are a smooth function
of stress).

Table IV further quantifies the accuracy of the projec-
tions shown in Figures 2b and 3 using the MAPE and the
MSE associated with the predicted times to failure. Also
shown for each of these predictions is a decomposition
of the MSE using Equation 8b above. The 4-® projection
technique produced a MAPE of just over 100%. Further,
the majority of the errors made in predicting the times

to failure were systematic in nature. For example, around
81% of the MSE is attributable to the average of the models
predictions differing from the average of the actual values.
Around 14% of the MSE was random in composition. In
contrast, the best of the generalised Monkman-Grant re-
lations used the creep rate measured at 0.2%. This model
produced a MAPE of around 18%. However, the majority
of the errors made in predicting the times to failure were
again systematic in nature. Around 77% of the MSE is
attributable to the average of the models predictions dif-
fering from the average of the actual values and around
22% of the MSE was random in composition.

The predictive capability of the other generalised
Monkman-Grant relations models were not so good as the
one above. This again raises the question of which strain
to use. It may be possible to combine the predictions from
all the generalised Monkman-Grant relations models into
a single improved prediction of time to failure. This issue
on combinations of forecasts will be addressed in a future

paper.

TABLE IV The MAPE, MSE and MSE decomposition for predictions of the time to failure

Generalised Monkman-Grant models using creep rates at:

Predictive

statistics 0.1% strain 0.2% strain 0.5% strain 1% strain 4-0
MAPE 40.35% 18.39% 66.44% 103.37% 103.54%
MSE 5.77E+7 7.75E+8 2.16E+410 1.5E+9 2.76E+9
Um 0.28% 76.91% 72.14% 97.88% 81.24%
Ur 83.67% 1.38% 17.53% 1.64% 4.73%
Up 16.06% 21.71% 10.33% 0.48% 14.02%
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The poorer performance (based on the MAPE) of the 4-
® projection technique relative to most of the generalised
Monkman-Grant relations probably reflect the poorer per-
formance of the 4-® projection technique in predicting
minimum creep rates. This in turn may be the result of
obtaining a good fit to the tertiary part of the creep curve
in the 4-© projection technique.

Finally, it can be noted from Tables III and IV that
the MSE and the MAPE give slightly different rankings
of all the different approaches described above. When
ranking techniques in this way it is always best to use the
MAPE because, unlike the MSE, it scales the prediction
error relative to the actual value. Further, the MSE can be
distorted by a few large prediction errors as a result of
the squaring procedure—a problem avoided through the
use of absolute values. The MSE is useful only because it
can be easily decomposed into a systematic and random
component (in a way that the MAPE can’t). As an absolute
measure of predictive accuracy it can be misleading.

6. Conclusion
It has been demonstrated, using simple simulations, that a
linear dependence in a double logarithmic coordinate sys-
tem exists between creep rates measured at any low strain
and the minimum creep rate if creep obeys the equations
making up the 4-® projection technique. This provides for
the possibility of modelling creep properties using gen-
eralised Monkman-Grant relations—that differ only by
the low strain chosen to measure the creep rate which is
used to predict the minimum creep rate. Short-term exper-
imental data confirms that such a relationship does indeed
appear to exist. Further, this relationship also holds into
the longer-term data so that the generalised Monkman-
Grant relation produces good predictions of the minimum
creep rates observed in the longer-term data. Indeed, all
but the generalised Monkman-Grant relation using 0.1%
strain had a lower MAPE compared to the 4-®projection
technique. The generalised Monkman-Grant relation us-
ing 0.5 and 1% strains had larger random components of
the MSE compared to the 4-®projection technique (and a
very similar random component at 0.2%).

When considering the accuracy with which times to
failure were predicted all of the generalised Monkman-
Grant relations produced lower MAPE compared to the

4-© projection technique. However, only when creep
rates were measured at 0.2% strain, did the generalised
Monkman-Grant relation produce prediction errors that
had a significantly higher random component compared
to the traditional 4-® projection technique.

The predictive capability of some generalised
Monkman-Grant relations were much better than others
and so the question of at which strain should creep rates
be measured appears again to be critical. It may be pos-
sible to combine the predictions from all the generalised
Monkman-Grant relations into a single improved predic-
tion of time to failure. This issue on combinations of
forecasts will be addressed in a future paper.
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